Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients

This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...

متن کامل

Oscillation of Even-Order Neutral Delay Differential Equations

By using Riccati transformation technique, we will establish some new oscillation criteria for the even order neutral delay differential equations z t n q t f x σ t 0, t ≥ t0, where n is even, z t x t p t x τ t , 0 ≤ p t ≤ p0 < ∞, and q t ≥ 0. These oscillation criteria, at least in some sense, complement and improve those of Zafer 1998 and Zhang et al. 2010 . An example is considered to illust...

متن کامل

Oscillation Theorems for Certain Even Order Neutral Differential Equations

This paper is concerned with a class of even order nonlinear differential equations of the form d dt “ ̨

متن کامل

Oscillation criteria for even-order neutral differential equations

Our aim in this paper is to present sufficient conditions for the oscillation of the second order neutral differential equation ( x(t)− px(t− τ ))′′ + q(t)x(σ(t)) = 0.

متن کامل

Oscillation Results for Even-order Quasilinear Neutral Functional Differential Equations

In this article, we use the Riccati transformation technique and some inequalities, to establish oscillation theorems for all solutions to evenorder quasilinear neutral differential equation “ˆ` x(t) + p(t)x(τ(t)) ́(n−1) ̃γ”′ + q(t)x ` σ(t) ́ = 0, t ≥ t0. Our main results are illustrated with examples.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2010

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2009.06.027